THE GAUSSIAN COTYPE OF OPERATORS FROM *C(K)*

BY

S. J. MONTGOMERY-SMITH *Department of Mathematics, University of Missouri at Columbia, Columbia, MO 65211, USA*

ABSTRACT

We show that the canonical embedding $C(K) \rightarrow L_{\Phi}(\mu)$ has Gaussian cotype p, where μ is a Radon probability measure on K, and Φ is an Orlicz function equivalent to $t^p(\log t)^{p/2}$ for large t.

In [7], I showed that the Gaussian cotype 2 constant of the canonical embedding $l_{\infty}^{N} \rightarrow L_{2,1}^{N}$ is bounded by log log N. Talagrand [9] showed that this embedding does not have uniformly bounded cotype 2 constant. In fact, a careful study of his proof yields that the cotype 2 constant is bounded below by $\sqrt{\log \log N}$. In this paper, we will show that this is the correct value for the Gaussian cotype 2 constant of this operator. However, we will show this via a different result, which we will give presently. First, let us define our terms.

We will write Φ_p for an Orlicz function such that $\Phi_p(t) \approx t^p(\log t)^{p/2}$ for large t.

For any bounded linear operator $T: X \rightarrow Y$, where X and Y are Banach spaces, and any $2 \leq p < \infty$, we say that T has *Gaussian cotype p* if there is a number $C < \infty$ such that for all sequences $x_1, x_2, \ldots \in X$ we have

$$
\mathbf{E}\left\|\sum_{s=1}^{\infty}\gamma_s x_s\right\| \geq C^{-1}\left(\sum_{s=1}^{\infty}\|Tx_s\|^p\right)^{1/p}.
$$

(Here, as elsewhere, y_1, y_2, \ldots denote independent $N(0, 1)$ Gaussian random variables.) We call the least value of C the *Gaussian cotype p constant* of T, and denote it by $\beta^{(p)}(T)$.

Received April 30, 1989

Throughout this paper, we shall use the letter c to denote a positive finite constant, whose value may change with each occurrence. We shall write $A \approx B$ to mean $A \leq cB$ and $B \leq cA$.

THEOREM 1. Let μ be a Radon probability measure on a compact Hausdorff *topological space K, and let* $2 \leq p < \infty$. Then the canonical embedding $C(K) \rightarrow$ $L_{\Phi_{\alpha}}(\mu)$ has Gaussian cotype p.

Finding the Gaussian cotype p constant of an operator from *C(K)* involves finding lower bounds for the quantity $\mathbf{E} \parallel \sum_{s=1}^{x} \gamma_s x_s \parallel_x$, where $x_1, x_2, \ldots \in$ $C(K)$. In fact, since we really only need to consider finite sequences $x_1, x_2, \ldots, x_s \in C(K)$, in order to prove Theorem 1, it is sufficient to show that the Gaussian cotype p constant of the canonical embedding $C(K) \rightarrow L_{\Phi_n}(\mu)$ is uniformly bounded over all *finite K.* Now we see that we are trying to find lower bounds for the supremum of the finite Gaussian process, $\sup_{\omega \in K} |\Gamma_{\omega}|$, where $\Gamma_{\omega} = \sum_{s=1}^{\infty} \gamma_s x_s(\omega)$. Hence we can apply the following result due to Talagrand [8].

THEOREM 2. Let $(\Gamma_{\omega} : \omega \in K)$ be a finite Gaussian process. (i) *Let* $\overline{ }$

$$
V_1 = \mathbf{E} \left(\sup_{\omega \in K} |\Gamma_{\omega}| \right).
$$

(ii) Let V_2 be the infimum of

$$
\left(\sup_{t\geq 1}\sqrt{1+\log t}(\mathbf{E}\,|\,Y_t|^2)^{1/2}\right)\left(\sup_{\omega\in K}\sum_{t=1}^{\infty}|\alpha_t(\omega)|\right)
$$

over all Gaussian processes $(Y_t)_{t=1}^{\infty}$ *and over all sequences* $(\alpha_t)_{t=1}^{\infty}$ *of functions on K such that* $\Gamma_{\omega} = \sum_{i=1}^{\infty} \alpha_i(\omega)Y_i$. *Then* $V_1 \approx V_2$.

We can rewrite this theorem in the following way. First, let us define the following spaces (here we are assuming K is finite).

$$
\mathcal{G} = \left\{ (x_s \in C(K))_{s=1}^{\infty} : || (x_s) ||_{\mathcal{G}} = \mathbf{E} \left\| \sum_{s=1}^{\infty} \gamma_s x_s \right\|_{\infty} < \infty \right\},
$$

$$
C(K, l_1) = \left\{ (\alpha_t \in C(K))_{t=1}^{\infty} : || (\alpha_t) ||_{C(K, l_1)} = || \sum_{t=1}^{\infty} |\alpha_t| ||_{\infty} < \infty \right\},
$$

$$
\mathcal{Y} = \left\{ (y_t \in l_2)_{t=1}^{\infty} : || (y_t) ||_{\mathcal{Y}} = \sup_{t \ge 1} \sqrt{1 + \log t} || y_t ||_2 < \infty \right\}.
$$

Let $m: C(K, l_1) \times \mathcal{Y} \rightarrow \mathcal{G}$ be the bilinear map $m((\alpha_l), (\gamma_l)) = (x_s)$, where

$$
x_s = \sum_{t=1}^{\infty} y_t(s) \alpha_t.
$$

COROLLARY 3. *The map m has the following two properties:*

- (i) *m is bounded;*
- (ii) *m* is open, that is, if $\|(x_s)\|_{\mathcal{G}} \leq 1$, then there are $\|(\alpha_i) \|_{C(K,l_i)} \leq c$ and $|| (y_i) ||_{\mathcal{Y}} \leq c$ such that $m((\alpha_i), (y_i)) = (x_s)$.

PROOF. This is just restating Theorem 2, setting $\Gamma_{\omega} = \sum_{s=1}^{\infty} \gamma_s x_s(\omega)$, and $Y_t = \sum_{s=1}^{\infty} \gamma_s y_t(s).$

From this we obtain the following corollary, for which we first give a definition.

DEFINITION. If $2 \leq p < \infty$, and $T: C(K) \rightarrow Y$ is a bounded linear map, where K is a finite Hausdorff space, and Y is a Banach space, then we set

$$
H^{(p)}(T)=\sup\left\{\left(\sum_{s=1}^{\infty} \parallel Tx_s \parallel^p\right)^{1/p}\right\},\,
$$

where the supremum is over all $x_s = \sum_{i=1}^{\infty} y_i(s) \alpha_i$, with $\alpha_1, \alpha_2, \ldots$ pairwise disjoint elements of the unit ball of $C(K)$, and $|| (y_t) ||_2 \leq 1/\sqrt{1 + \log t}$ for each $t\geq 1$.

COROLLARY 4. *For any* $2 \leq p < \infty$, and for any bounded linear operator $T: C(K) \rightarrow Y$, where K is a finite Hausdorff space, and Y is a Banach space, we *have*

$$
H^{(p)}(T)\approx \beta^{(p)}(T).
$$

PROOF. This follows straight away from Corollary 3 and the following lemma.

LEMMA 5. Let B be the set of $(\alpha_i) \in C(K, l_1)$ such that the α_i are pairwise *disjoint elements of the unit ball of C(K). Then the closed convex hull of B is the unit ball of* $C(K, l_1)$ *.*

PROOF. See [5], Lemma 4 or [3], Proposition 14.4.

Now we are almost in a position to prove Theorem 1; we just need the following properties of $L_{\Phi_{\theta}}(\mu)$ (see [4]).

LEMMA 6. If μ is a Radon probability measure on a compact Hausdorff *space K, then*

(i) *for any Borel subset I of K, we have* $|| \chi_1 ||_{\Phi_n} \approx (\mu(I))^{1/p} \sqrt{\log(1/\mu(I))};$

(ii) *the space* L_{Φ_p} *satisfies an upper p estimate.*

PROOF OF THEOREM 1. We want to show that $H^{(p)}(C(K) \to L_{\Phi_n}(\mu)) \leq c$, where μ is a probability measure on a finite Hausdorff space K. So consider $(x,), (\alpha)$ and (y) as given in the definition of $H^{(p)}(T)$. Then we need to show that

$$
\sum_{s=1}^{\infty} \| x_s \|_{\Phi_p} \leq c.
$$

First note, by Lemma 6, that

$$
\|x_s\|_{\Phi_p}^2 \leq c \sum_{t=1}^{\infty} |y_t(s)|^p \|\alpha_t\|_{\Phi_p}^p
$$

$$
\leq c \sum_{t=1}^{\infty} |y_t(s)|^p \mu(I_t) \left(\log \frac{1}{\mu(I_t)}\right)^{p/2}
$$

where I_t is the support of α_t . Hence

$$
\sum_{s=1}^{\infty} \| x_s \|_{\Phi_{\rho}}^2 \leq c \sum_{t=1}^{\infty} \sum_{s=1}^{\infty} |y_t(s)|^p \mu(I_t) \left(\log \frac{1}{\mu(I_t)} \right)^{p/2}
$$

$$
\leq c \sum_{t=1}^{\infty} \frac{1}{(1 + \log t)^{p/2}} \mu(I_t) \left(\log \frac{1}{\mu(I_t)} \right)^{p/2},
$$

since $||y_t||_p \le ||y_t||_2 \le 1/\sqrt{1 + \log t}$. But now, splitting the sum into the two cases $\mu(I_t) \geq 1/t^2$ or $\mu(I_t) < 1/t^2$, we deduce that this sum is bounded by some universal constant. \Box

Concluding remarks

We first note that there is a nice way to calculate the Orlicz norms $\|\cdot\|_{\Phi_n}$ provided by the following result of Bennett and Rudnick.

THEOREM 7. If $1 \leq p < \infty$ and $a \in \mathbb{R}$, then the Orlicz probability norm *given by the function* $\Theta(t) \approx t^p(\log t)^a$ (*t large*) *is equivalent to the norm*

$$
|| x || = \left(\int_0^1 \left(1 + \log \frac{1}{t} \right)^a x^*(t)^p dt \right)^{1/p},
$$

where x^* is the non-increasing rearrangement of $|x|$.

PROOF. See [1], Theorem D. \Box

Thus we can now deduce the following result.

THEOREM 8. *The Gaussian cotype 2 constant of the canonical embedding* $l_{\infty}^{N} \rightarrow L_{2,1}^{N}$ *is bounded by* $\sqrt{\log \log N}$.

PROOF. Let $K = \{1, 2, ..., N\}$, and let μ be the measure $\mu(A) = |A|/N$. Now notice that if $x \in l^N_{\infty} = C(K)$, $x^*(t)$ is constant over $0 \le t \le 1/N$, and hence

$$
\|x\|_{L_{2,1}^{N}} = \frac{1}{2} \int_0^1 \frac{x^*(t)}{\sqrt{t}} dt
$$

\n
$$
= \frac{x^*(1/N)}{\sqrt{N}} + \frac{1}{2} \int_{1/N}^1 \frac{x^*(t)}{\sqrt{t}} dt
$$

\n
$$
\leq \left(\int_0^{1/N} \left(1 + \log \frac{1}{t}\right) x^*(t)^2 dt \right)^{1/2}
$$

\n
$$
+ \frac{1}{2} \left(\int_{1/N}^1 \frac{1}{t(1 + \log 1/t)} dt \right)^{1/2} \left(\int_{1/N}^1 \left(1 + \log \frac{1}{t}\right) x^*(t)^2 dt \right)^{1/2}
$$

\n
$$
\leq c \sqrt{\log \log N} \|x\|_{\Phi_2}.
$$

This is sufficient to prove the result.

An obvious question is the following.

PROBLEM 9. Is there a rearrangement invariant norm $\|\cdot\|_X$ on [0, 1] which is strictly larger than $\|\cdot\|_{\Phi_n}$, but for which the canonical embedding $C(K) \rightarrow X(\mu)$ has Gaussian cotype p?

For $p > 2$, the answer is yes. The embedding $C(K) \rightarrow L_{p,1}(\mu)$ has cotype p (this follows from results in [2]). Hence $X = L_{\Phi_n} \cap L_{p,1}$ equipped with the norm $||x|| = \max{ \{||x||_{\Phi_n}, ||x||_{p,1}\} }$ provides the counterexample.

For $p=2$, the answer is no. Talagrand [10] has recently shown that if $C[0, 1]$ \rightarrow X has Gaussian cotype 2, then $\|\cdot\|_X$ is bounded by a constant times $\|\cdot\|_{\Phi_2}.$

Another problem is also suggested by Theorem 1.

PROBLEM 10. If $T: C(K) \to X$ is a linear map with Gaussian cotype 2, does

 \Box

it follows that there is a Radon probability measure μ on K such that $\parallel Tx \parallel \leq c \parallel x \parallel_{L_{\Phi}(\mu)}$ for $x \in C(K)$?

Talagrand **[10]** has recently shown that this is not the **case.**

ACKNOWLEDGEMENTS

Much of the contents of this paper also appear in my Ph.D. thesis [6], which I studied at Cambridge University under the supervision of Dr. D. J. H. Garling, to whom I would like to express my thanks. I would also like to acknowledge simplifications communicated to me by M. Talagrand, including the statement of Corollary 4.

REFERENCES

1. C. Bennett and K. Rudnick, *On Lorentz-Zygmundspaces,* Diss. Math. 175 (1980), 1-72.

2. J. Creekmore, *Type and cotype in Lorentz Lp.¢ spaces,* Indag. Math. 43 (1981), 145-152.

3. G. J. O. Jameson, *Summing and Nuclear Norms in Banach Space Theory,* London Math. Soc., Student Texts 8, 1987.

4. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I -- Sequence Spaces*, Springer-Verlag, Berlin, 1977.

5. B. Maurey, *Type et cotype dans les espaces munis de structures locales inconditionelles,* Seminaire Maurey-Schwartz 1973-74, Exposés 24-25.

6. S. J. Montgomery-Smith, *The cotype of operators from C(K),* Ph.D. thesis, Cambridge University, August 1988.

7. S. J. Montgomery-Smith, *On the cotype of operators from 1~,* preprint.

8. M. Talagrand, *Regularity of Gaussian processes,* Acta Math. 159 (1987), 99-149.

9. M. Talagrand, *The canonical injection from C*([0, 1]) *into* $L_{2,1}$ *is not of cotype* 2, Contemp. Math. 85 (1989), 513-521.

10. M. Talagrand, Private Communication.