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ABSTRACT 

We show that the canonical embedding C(K)-. L®(p) has Gaussian cotype p, 
where/z is a Radon probability measure on K, and • is an Orlicz function 
equivalent to tP(log t )  p/2 for large t. 

In [7], I showed that the Gaussian cotype 2 constant of the canonical 
embedding l~ ----L~ is bounded by log log N. Talagrand [9] showed that this 
embedding does not have uniformly bounded cotype 2 constant. In fact, a 
careful study of his proof yields that the cotype 2 constant is bounded below by 
~ N .  In this paper, we will show that this is the correct value for the 
Gaussian cotype 2 constant of this operator. However, we will show this via a 
different result, which we will give presently. First, let us define our terms. 

We will write q~p for an Orlicz function such that q~p(t)~ tP(log t) p/2 for 
large t. 

For any bounded linear operator T: X---Y, where X and Y are Banach 
spaces, and any 2 < p < ~ ,  we say that Thas Gaussian cotypep if there is a 
number C < oo such that for all sequences x~, x : , . . .  E X we have 

,, 
s ~ l  s I 

(Here, as elsewhere, 71, ~h, . . .  denote independent N(0, 1) Gaussian random 
variables.) We call the least value of C the Gaussian cotype p constant of T, and 

denote it by ffP)(T). 
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Throughout this paper, we shall use the letter c to denote a positive finite 
constant, whose value may change with each occurrence. We shall write A ~ B 
to mean A < cB and B < cA. 

THEOREM 1. Let It be a Radon probability measure on a compact Hausdorff 
topological space K, and let 2 < p < oc. Then the canonical embedding C(K)--" 

L,~,(lt) has Gaussian cotype p. 

Finding the Gaussian cotype p constant of an operator from C(K) involves 
finding lower bounds for the quantity E II x:=, ~,x, I1~, where xl, x2 . . . .  
C(K). In fact, since we really only need to consider finite sequences 
xl, x2 . . . .  , Xs E C(K), in order to prove Theorem 1, it is sufficient to show that 
the Gaussian cotype p constant of the canonical embedding C(K)--. L®,(l*) is 
uniformly bounded over all finite K. Now we see that we are trying to find 
lower bounds for the supremum of the finite Gaussian process, supo~EK IF o, I, 
where Fo, = Y~sZI 7sxs(to). Hence we can apply the following result due to 
Talagrand [8]. 

THEOREM 2. 

(i) Let 
Let (F,o : o2 ~ K) be a finite Gaussian process. 

(ii) Let lie be the infimum o f  

(sup ~/1 +logt(Elytl2)l /2)(sup ~ lat(to)l) 
t>ffil / \ ~oEK t - - I  

over all Gaussian processes (Yt)t~ffil and over all sequences (a,)t~ffil of  

functions on K such that Fo, -= g?~=l at(to)Y, 

Then VI ~ I/2. 

We can rewrite this theorem in the following way. First, let us define the 
following spaces (here we are assuming K is finite). 

~---{(x,~ C(K))~=I" II (x,)II '--E ,=1 ~' ?,x, ~ < oo}, 

C(K, 11)= {(at ~ C(K))T=I" [I (a,)IIC(K'I')= t--l~'d JOlt] o° < 00), 
= ~(Y, ~12);*-, "11 (Yt) J]- -- sup x/1 + log t ]l Y, I]2 < oo~. 

( t=>l ) 
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Let m : C(K, 10 × ~ ~ ~ be  the bilinear map m((a , ) ,  (y , ) )  = (xs), where 

X s = ~ Yt(S)at. 
t ~ l  

COROLLARY 3. The map m has the following two properties: 
(i) m is bounded; 

(ii) m is open, that is, i f  II (xD II. --< 1, then there are II (~,) Ilct,<,J,)- -< c and 
II (y , ) I I~  <-- c such that m((ot,), (Yt)) =- (Xs). 

PROOF. This is just restating Theorem 2, setting F,o = Z~=, ysx~(to), and 

Yt = Z~=, ~sYt(S). [] 

From this we obtain the following corollary, for which we first give a 
definition. 

DEFINITION. If  2 < p < ~ ,  and T:  C ( K ) ~  Y is a bounded linear map, 
where K is a finite Hausdorff space, and Y is a Banach space, then we set 

)'} H¢')(T) = sup II Zx, I1' , 
s 1 

where the supremum is over all xs = ~;~_, Yt (S )a t ,  with a,, a2 . . . .  pairwise 
disjoint elements of  the unit  ball of  C(K), and ][ (Yt) 112 < l /x /1  + log t for each 
t > l .  

COROLLARY 4. For any 2 ~ p < ~ ,  and for any bounded linear operator 

T: C(K) ~ Y, where K is a finite Hausdorff space, and Y is a Banach space, we 
have 

HtP)( T) .~ #tP)( T). 

PROOF. This follows straight away from Corollary 3 and the following 
lemma. 

LEMMA 5. Let B be the set o f  (at)E C(K, ll) such that the at are pairwise 

disjoint elements o f  the unit ball o f  C(K). Then the closed convex hull o f  B is the 
unit ball o f  C(K, l,). 

PROOF. See [5], Lemma 4 or [3], Proposition 14.4. [] 

Now we are almost in a position to prove Theorem 1; we just need the 
following properties of  L,,(g)  (see [4]). 
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LEMMA 6. I f  It is a Radon probability measure on a compact Hausdorff 

space K, then 

(i) for any Borel subset I o f  K, we have ]l Z~ [h,, ~ (It(l))I/px/log (1/It(l)); 
(ii) the space L. ,  satisfies an upper p estimate. 

PROOF OF THEOREM 1. We want to show that H~P)(C(K)--.L..(It))<= c, 

where It is a probability measure on a finite Hausdorff space K. So consider 
(x,), (at) and (Yt) as given in the definition of H~P)(T). Then we need to show 

that 

IIx~ II~, =<c. 
s = l  

First note, by Lemma 6, that 

Ilx, 116, _-<c 
t ~ l  

< c ~  
t ~ l  

where It is the support of at. Hence 

s ~ l  t ~ l  s = l  

ly,(s)l ~ II at II~p 

/ 1 \p/2 

log 1 /v/2 
l yt(s) [PIt(It) \ g-~t)/ 

_-<c~ 1 
t~t (1 + log t ) p/2 

/ 1 \,J2 
, 

since II yt I1~ ~ II yt 112 ~ l/x/-1 + log t. But now, splitting the sum into the two 
cases It(It) > 1/t 2 or It(It) < 1/t 2, we deduce that this sum is bounded by some 
universal constant. [] 

Concluding remarks 

We first note that there is a nice way to calculate the Orlicz norms ]1 • I[~,p 
provided by the following result of  Bennett and Rudnick. 

THEOREM 7. I f  1 < p < O0 and a ~ R, then the Orlicz probability norm 

given by the function O(t) ,~ tP(log t) ~ (t large) is equivalent to the norm 

Ilxll = ( f o~ ( l + l°g ~)ax*(t)'dt) '/p , 
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where x* is the non-increasing rearrangement o f  Ix I. 

PROOF. See [1], Theorem D. [] 

Thus we can now deduce the following result. 

THEOREM 8. The Gaussian cotype 2 constant o f  the canonical embedding 
IN ._. r N is bounded by x/log log N. z.~2,1 

PROOF. Let K = {1, 2 . . . .  ,N},  and let g be the measure/~(A) = IA I/N. 
Now notice that if x ~ l ~  = C(K), x*(t) is constant over 0 < t < 1/N, and 
hence 

1 fo I X*(t) II x I1,~,, = ~ ~ dt 

x*(1/N) 1 f '  x*(t) 
+ 2 J i m  x/~ dt 

=< (;ol in (1 +log~)x*( t )2dt )  ~/2 

l ( f ,  1 
+ 2 m t(1 + log 1/t) 

z c ~ II x 11.2- 

This is sufficient to prove the result. 

dt) l/2( f llN ( l + log ~) x*(t)2dt) l/2 

[] 

An obvious question is the following. 

PROBLEM 9. IS there a rearrangement invariant norm l] • ]Ix on [0, 1] 
which is strictly larger than 11 • 11,,, but for which the canonical embedding 
C(K) ~ X(la) has Gaussian cotype p? 

For p > 2, the answer is yes. The embedding C(K)--~Zp,l(#) has cotype p 
(this follows from results in [2]). Hence X = L . ,  N Lp,l equipped with the norm 

II x II --- max{ II x I1®,, II x lip,l} provides the counterexample. 
For p---2, the answer is no. Talagrand [10] has recently shown that if 

C[0, 1 ] ---- Xhas Gaussian cotype 2, then II • IIx is bounded by a constant times 

II" 11.2. 
Another problem is also suggested by Theorem 1. 

PROBLEM 10. If  T : C(K) -~ Xis a linear map with Gaussian cotype 2, does 
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it follows that there is a Radon probability measure /~ on 

II Tx II c tl x for x 6 C(K)? 

Talagrand [ 10] has recently shown that this is not the case. 

K such that 
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